坂本航太郎 (@superbradyon)


参加する勉強会



過去の勉強会

5/21 (木)

92cc05905435cc2d07f6e0ba589d5e82 機械学習 名古屋
論文等紹介LT大会その26
機械学習 名古屋 研究会 注意 COVID-19対策にしばらくオンラインイベントとします。 概要 機械学習に関する論文・技術ブログを読み、情報共有のLTをする勉強会です。 【発表者・事前に】 論文・技術ブログのまとめ作成(研究会の GitHub リポジトリにプルリク) 【当日】 発表・質疑応答・不明点の解明 対象 機械学習を業務・趣味で用いている人 チュートリアルや基本的な技術書をある程度読み終え、次のステップへ進みたい人 機械学習を使ったサービスのネタを探している人 目的 急速な進歩を続ける機械学習の分野で活躍するには、最新技術の情報収集が重要です。多人数で情報収集・共有をすれば効率的です。この勉強会で、 知識のアップデート 論文を読む習慣付け 発展的・実践的な知見の獲得 をしましょう。 時間割 合計2時間のLT会を行います。発表者数で割った時間が一人あたりの持ち時間です。 一人あたり、発表5分、質疑応答5分を想定しています。 会場 このイベントはリモートで行います。開始直前にconnpass登録の連絡先に届く参加方法を確認し、リモート参加してください。 参加方法 枠 事前準備 当日 備考 リモート発表枠 論文・技術ブログをまとめる(「発表方法」を参照) 開始直前にconnpass登録の連絡先に届く参加方法を確認し、リモート参加してください。 読む論文が決まらない場合も現地発表枠で申し込んでください リモート一般枠 開始直前にconnpass登録の連絡先に届く参加方法を確認し、リモート参加してください。 発表方法 論文・技術ブログを開催日時までに読んで、マークダウン形式で簡単にまとめ、研究会の GitHub リポジトリにプルリクエストを出してください。不明な場合などは代行します。その場合、管理者宛にまとめた.mdファイルを送付してください。 論文・技術ブログのまとめ方について 次は、まとめの章立ての例です。このような内容をまとめてください。 章 内容 どんなもの? 手法の概要 先行研究と比べて何がすごい? 新規性について 技術や手法の肝は? 手法のポイント どうやって有効だと検証した? 評価指標など 議論はある? 論文の研究で出た予想や残った課題など 次に読むべき論文 関連する論文 論文まとめテンプレートを用意しています↓ 論文まとめテンプレート テンプレートなどを利用して、マークダウン形式(.md ファイル)でまとめを作成してください。 提出方法 提出は、研究会の GitHub リポジトリ へのプルリクエストで行います。 {研究会日付}_reportsディレクトリ内に、発表と紐づくようなパス(論文タイトル、発表者名など)でまとめを配置してください。例えば、第1回論文まとめディレクトリを参考にしてください。 GitHub を使えないなどの場合は、当日までに論文をまとめた .md ファイルを管理者宛に送付(もしくは共有URLを提示)いただければ、プルリク代行いたします。 FAQ どうまとめたらいいか分からない まとめの章立ての例や、論文まとめテンプレートは、 落合陽一氏の論文まとめ方(あるスライドの65ページ目) を参考に作成したものです。 考え方やコツは、これまでのまとめ(例えば、第1回論文まとめディレクトリ)や、以下に挙げる参考サイトなどを参考にしてください。 参考 高速で論文がバリバリ読める落合先生のフォーマットがいい感じだったのでメモ - 書架とラフレンツェ パワポ版の落合先生流論文要旨のテンプレートを作ったので配布する - 一人ぼっちのライフハック生活 GitHub の使い方(プルリクエストのやり方)が分からない プルリクエストには GitHub のアカウントが必要です。プルリクエストの方法は次の記事が参考になります。 【GitHub】Pull Requestの手順 GitHubでFork/cloneしたリポジトリを本家リポジトリに追従する 最新論文でないですが大丈夫ですか 会の趣旨から大きく離れていなければ大丈夫です。 画像を入れたい 外部サイトに画像を置く以外にも、20xxxxxx_reports/{発表との対応が分かるディレクトリ名}/xx.pngのようなパスに画像を置く方法をおすすめします。 差分 第25回より COVID-19対策にリモートのみとした。 第24回より リモート枠をリモート発表枠とリモート一般枠に分けた(発表者人数把握のため)。 第14回より アンケートを無くした。 現地発表者は読む論文が決まっていなくても最初から現地発表枠で申し込む方式に変更した。 第13回より 論文以外にも技術ブログも可とした。 発表しなくても可とした。ただし、枠は発表者優先。 リモート参加を可とした。

4/20 (月)

68591b8804fe1f3e3caa271cce3347f1 全脳アーキテクチャ勉強会
汎用AIと共生インタラクション
第30回 全脳アーキテクチャ勉強会[オンライン] (現状に鑑み、当法人では、オンラインでの勉強会を進めてゆく所存です) テーマ:汎用AIと共生インタラクション 開催趣旨:我々の日常生活圏にて我々と共生し,我々をサポートすることが汎用AIの活躍が期待される主たる用途の一つである.ここで重要となるのが,人とAIとの間に発生するインタラクションである.インタラクションに関する研究は常にAI研究のメインストリームの一つであり長い歴史を持つ.そして,「人間と情報環境の共生インタラクション基盤技術の創出と展開」と題して,人間・機械・情報環境からなる共生社会におけるインタラクションに関する理解を深め,人間同士から環境全体まで多様な形態でのインタラクションを高度に支援する情報基盤技術の創出と展開を目指す研究テーマが現在,JST CRESTとしても実施中である.そこで,今回の勉強会は,人と共生するAIの実現に向けた取り組みにおいて,インタラクションという切り口から研究を2件紹介するとともに,共生AIを実現する上での汎用AIの必要性についてパネル討論を行う. 勉強会開催詳細 日 時:2020年04月20日(月) 18:00~21:00 会 場:オンライン Zoomウェビナー 定 員:400名 主 催:NPO法人 全脳アーキテクチャ・イニシアティブ 運 営:WBA勉強会実行委員会 申し込みから参加までの流れについては、下記を参照ください。 参加枠/参加費について 今後とも、当勉強会を末永く続けてゆくために、主要な支出である講師謝金・配信運営費等の必要経費について、学生以外の参加者に分担していただく方針とさせていただきます。参加をご検討の皆様には何卒ご理解いただけますと幸いでです。 一般参加枠: 先着順になります。お支払いいただいた代金は、今回の講師謝金および配信運営費に充当させていただきます。 学生参加枠: 学生のみが応募できる、無料の先着順枠です。 懇親会枠: 案内開始いたしました。 こちらから申し込みください。 https://wba-meetup.connpass.com/event/173189/ Zoomミーティングでオンラインで実行いたします。 勉強会参加者の方が申し込めます。 どうぞよろしくお願いいたします。 講演スケジュール 時間 内容 講演者 17:55 開場 18:00 開会の挨拶 山川 宏(全脳アーキテクチャ・イニシアティブ) 18:05 趣旨説明 栗原 聡(慶應義塾大学) 18:20 開催ご挨拶 間瀬 健二(名古屋大学) 18:30 Brain-Computer interfaceによる脳とAIのインタラクション 栁澤 琢史(大阪大学) 19:15 休憩(10分) 19:25 ヒューマンエージェントインタラクション:AIとHCIの葛藤 今井 倫太(慶應義塾大学) 20:10 ディスカッション 栗原聡(モデレーター)、間瀬 健二、栁澤 琢史、今井 倫太、山川 宏 20:50 Closing Remark 藤井 烈尚 (実行委員長) 21:00 終了 21:15 懇親会 オンライン Brain-Computer interfaceによる脳とAIのインタラクション 講演者:栁澤 琢史(大阪大学 高等共創研究院 教授) 概要: 脳信号から様々な知覚認知内容や運動状態などをAIによって推定する脳情報解読技術(Neural Decoding)によって、脳とコンピュータを直接つなぐBrain-Computer Interface(BCI)が実現した。また、脳表脳波を用いたneural decodingにより、人の言語や気分を推定できることが報告されている。さらに、体内埋め込み型脳信号計測技術が実用化され、脳の電気刺激と組み合わされることで、AIが推定した脳情報に応じて脳活動を制御するBrain-chipが、失った脳機能の補填や機能拡張として期待されている。しかし、BCIを介した脳とAIのインタラクションによる脳への影響は明らかではない。本講演では、BCIの現状とAIとのインタラクションについて議論する。 ヒューマンエージェントインタラクション:AIとHCIの葛藤 講演者:今井 倫太(慶應義塾大学理工学部 教授) 概要: 他者の行動・環境の変化を予測し生存力を高めるために知的能力を身につけてきたのが生物という観点に立つと、他者や環境とのインタラクションを成り立たせている原理・仕組みを考えることは知能研究において重要な位置を占めることが分かる。本講演では、人とインタラクションするエージェント(ロボットやCGキャラクタ)を通して、インタラクションを扱う知的情報処理システムについて考える。特に、人と機械の間のインタラクションを改善する目的で始まった人工知能研究とヒューマンコンピュータインタラクション研究が独自に発展し袂を分かつようになった中で、再度お互いに連携しあう可能性について考える。 申し込みから参加までの流れ 一般参加枠の方 Connpass から申し込み、PayPalでお支払いをお願いします。 開催前日および当日、Connpass から Zoom への登録情報(URL)のお知らせが届きます。 開催当日16時までに Zoom の登録URLにアクセスし、登録を行ってください。この際、 名前は実名でなくてもかまいません。質問などある方はわかりやすい名前が有利です。 メールアドレスは、PayPal お支払いの際に用いたメールアドレスをご使用ください。 登録承認後、Host WBAI ([email protected]) から Zoom Webinar アクセス用のリンクを含むメールが送られてきます。 Zoom アプリの準備がまだの方はお使いの端末にインストールしておいてください。 開演時間(18時)になったら上記リンクをクリックし、Webinar にアクセスしてください。 学生参加枠の方 Connpass から申し込みをお願いします。 開催前日および当日、Connpass から Zoom への登録情報(URL)のお知らせが届きます。 開催当日16時までに Zoom の登録URLにアクセスし、登録を行ってください。この際、 First Name:Connpassのユーザー名、Last Name:学校名を入力ください。 登録用のメールアドレスには、通学中の学校のドメインのアドレスをご使用ください。 (事情があって学校ドメインのアドレスが使えない場合、Connpass 経由で連絡ください。) 登録承認後、Host WBAI ([email protected]) から Zoom Webinar アクセス用のリンクを含むメールが送られてきます。 Zoom アプリの準備がまだの方はお使いの端末にインストールしておいてください。 開演時間(18時)になったら上記リンクをクリックし、Webinar にアクセスしてください。 Zoomパーフェクトマニュアル 今後色々なところでオンラインイベントが行われるようになると思います。 参考にしていただければ幸いです。 https://zoomy.info/zoom_perfect_manual/ 運営スタッフ プログラム委員長:栗原 聡 実行委員長:藤井 烈尚 司会:山川 宏 Zoomウェビナー担当:門前 一馬、横田 浩紀、生島 高裕、荒川 直哉 connpass:生島 高裕、孫 暁白 SNS告知:荒川 直哉 全脳アーキテクチャ勉強会オーガナイザー ◎ 産業技術総合研究所 人工知能研究センター 一杉裕志 1990年東京工業大学大学院情報科学専攻修士課程修了。1993年東京大学大学院情報科学専攻博士課程修了。博士(理学)。同年電子技術総合研究所(2001年より産業技術総合研究所)入所。プログラミング言語、ソフトウエア工学の研究に従事。2005年より計算論的神経科学の研究に従事。 「全脳アーキテクチャ解明に向けて」 ◎ 全脳アーキテクチャ・イニシアティブ 山川宏 1987年3月東京理科大学理学部卒業。1992年東京大学で神経回路による強化学習モデル研究で工学博士取得。同年(株)富士通研究所入社後、概念学習、認知アーキテクチャ、教育ゲーム、将棋プロジェクト等の研究に従事。フレーム問題(人工知能分野では最大の基本問題)を脳の計算機能を参考とした機械学習により解決することを目指している。 ◎ 東京大学 教授 松尾豊 1997年東京大学工学部卒業。2002年東京大学大学院工学系研究科博士課程修了。博士(工学)。産総研、スタンフォード大学等を経て、2007年から東京大学勤務。深層学習を中心とする人工知能の研究に従事。産学連携やスタートアップの育成などにも取り組む。 http://ymatsuo.com/japanese/ 全脳アーキテクチャ・イニシアティブ創設賛助会員 全脳アーキテクチャ・イニシアティブでは、賛助会員を募集しております。賛助会員に登録いただきますと、当サイトに貴団体ロゴとホームページへのリンク掲載や、各種イベントの優先参加など、さまざまな特典がございます。詳しくは、こちらをご覧ください。 これまでに開催された勉強会の内容 第29回 全脳アーキテクチャ勉強会 テーマ:脳と創造性 ひらめきは準備された心にやってくる ー認知科学における創造性研究ー | 三輪 和久(名古屋大学) 創造性における多角的なアプローチ ー認知・身体・他者ー | 清水 大地(東京大学) 第28回 全脳アーキテクチャ勉強会 テーマ:社会性の認知モデル ナイーブな欲求に基づくインタラクションの始まりとデザイン | 竹内 勇剛(静岡大学) 社会性の認知脳メカニズム | 嶋田 総太郎(明治大学) 「心の理論」の計算論的モデリング | 中橋 亮(ソニー・インタラクティブエンタテインメント) 第27回 全脳アーキテクチャ勉強会 テーマ:確率的グラフィカルモデルと脳 動的ボルツマンマシンとPommerman | 恐神 貴行(IBM 東京基礎研究所) 確率的グラフィカルモデルと離散構造処理 | 石畠 正和(NTT コミュニケーション科学基礎研究所) 第26回 全脳アーキテクチャ勉強会 テーマ:自由エネルギー原理 正解のない問題の解決: 実用的知能と行動選択の心理学 | 熊田 孝恒(京都大学) 感情と感情障害のしくみ -自由エネルギー原理の観点からとらえ直す- | 乾 敏郎(追手門学院大学) 第25回 全脳アーキテクチャ勉強会 テーマ:計算論的精神医学 エンジニアのための計算論的精神医学 | 浅川 伸一(東京女子大学) 計算論的精神医学:脳の計算理論に基づく精神障害の病態理解 | 山下 祐一(国立精神・神経医療研究センター) 第24回 全脳アーキテクチャ勉強会 トップダウン制約からの強化学習と社会学習 | 高橋 達二(東京電機大学) 仮説生成に向けた等価性構造抽出 | 佐藤 聖也(東京電機大学) 現代人工知能によって何が変わるのだろうか | 前田 英作(東京電機大学) アブダクションは具体的に研究しうる〜遮蔽補完の計算論〜 | 坂本 一寛(東北医科薬科大学) 第23回 全脳アーキテクチャ勉強会&第4回WBAハッカソン説明会 テーマ:脳における強化学習 強化学習 もう一つの源流:分類子システム | 荒井 幸代(千葉大学) 脳における強化学習| 太田宏之先生(防衛医大) 第22回 全脳アーキテクチャ勉強会 テーマ:自律性と汎用性 創発インタラクションの意義:機能分化に対する変分原理と数理モデル | 津田 一郎(中部大学創発学術院) デザインされた行動から自律発達的な行動へ:インテリジェンスダイナミクスに関して | 藤田 雅博(ソニー株式会社) 勉強会概要と発表資料 第21回 全脳アーキテクチャ勉強会 テーマ:「推論」 【脳科学】前頭葉での推論 | 坂上雅道(玉川大学) 【認知科学】人の推論過程 | 服部雅史(立命館大) 【人工知能】ベイジアンネット | 植野真臣(電気通信大学) 勉強会概要と発表資料 第20回 全脳アーキテクチャ勉強会 ~ 海馬における文脈表現 海馬とエピソード記憶 ―脳は物語をいかに表現するか?― 全脳における海馬の計算論 第20回 全脳アーキテクチャ勉強会 ~ 海馬における文脈表現 まとめ (togetter) 第19回 全脳アーキテクチャ勉強会 ~ 脳・人工知能とアナログ計算・量子計算 アナログ計算機と計算可能性 量子アニーリングのこれまでとこれから 第19回 全脳アーキテクチャ勉強会 ~ 脳・人工知能とアナログ計算・量子計算〜 まとめ (togetter) 第18回 全脳アーキテクチャ勉強会 ~ 全脳規模計算 全脳シミュレーション 時間領域アナログ方式で脳の演算効率に迫る 第18回 全脳アーキテクチャ勉強会 ~ 全脳規模計算 ~ まとめ (togetter) 第17回 全脳アーキテクチャ勉強会 ~ 失語症と発達性ディスレクシア ~ 失語症と発達性ディスレクシア 脳内神経繊維連絡と失語症 発達性ディスレクシア - 生物学的原因から対応まで 第16回 全脳アーキテクチャ勉強会 ~ 人工知能は意味をどう獲得するのか ~ ヒト大脳皮質における意味情報表現 画像キャプションの自動生成 第15回 全脳アーキテクチャ勉強会 ~ 知能における進化・発達・学習 ~ ヒトの知性の進化 発達する知能 -ことばの学習を可能にする能力― 勉強会概要と発表資料 第14回 全脳アーキテクチャ勉強会 ~ 深層学習を越える新皮質計算モデル ~ 大脳新皮質のマスターアルゴリズムの候補としての Hierarchical Temporal Memory (HTM) 理論 サル高次視覚野における物体像の表現とそのダイナミクス 勉強会概要と発表資料 第13回 全脳アーキテクチャ勉強会 ~ コネクトームと人工知能 ~ コネクトームの活用とその近未来 脳全体の機能に迫る 勉強会概要と発表資料 第12回 全脳アーキテクチャ勉強会 ~ 脳の学習アーキテクチャー ~ 脳の学習アーキテクチャ パネルディスカッション「神経科学と全脳アーキテクチャ」 勉強会概要と発表資料 第11回 全脳アーキテクチャ勉強会 ~ Deep Learning の中身に迫る ~ 深層学習の学習過程における相転移 Deep Neural Networks の力学的解析 SkymindのDeep Learning への取り組み 勉強会概要と発表資料 第10回 全脳アーキテクチャ勉強会 「全脳アーキテクチャのいま」~ 全脳アーキテクチャプロジェクトとそれをとりまく周辺の最新状況報告 ~ 全脳アーキテクチャの全体像 人工知能の難問と表現学習 全脳アーキテクチャと大脳皮質モデル BESOM の実用化研究の構想 全脳アーキテクチャを支えるプラットフォーム 人工知能・ロボット次世代技術開発 汎用人工知能に向けた認知アーキテクチャが解決するべき知識の課題 感情モデルと対人サービス 若手の会の活動報告 勉強会概要と発表資料 第9回 全脳アーキテクチャ勉強会 ~ 実世界に接地する言語と記号 ~ 脳内視覚情報処理における物体表現の理解を目指して ~ Deep neural network の利用とブレイン・マシン・インタフェースへの応用 ~ 記号創発ロボティクス ~内部視点から見る記号系組織化への構成論的アプローチ~ 脳科学から見た言語の計算原理 勉強会概要と発表資料 第8回 全脳アーキテクチャ勉強会 時系列データ ~ 脳と機械学習技術は時間をどう扱うのか ~ 脳における時間順序判断の確率論的最適化 順序とタイミングの神経回路モデル 深層学習によるロボットの感覚運動ダイナミクスの学習 勉強会概要と発表資料 第7回 全脳アーキテクチャ勉強会 感情 ~ 我々の行動を支配する価値の理解にむけて ~ 感情の進化 ~ サルとイヌに見られる感情機能 ~ 情動の神経基盤 ~ 負情動という生物にとっての価値はどのように作られるか? ~ 感情の工学モデルについて ~ 音声感情認識及び情動の脳生理信号分析システムに関する研究 ~ 勉強会概要と発表資料 第6回 全脳アーキテクチャ勉強会 統合アーキテクチャー ~ 神経科学分野と AI 分野の研究蓄積の活用に向けて ~ 分散と集中:全脳ネットワーク分析が示唆する統合アーキテクチャ 脳の計算アーキテクチャ:汎用性を可能にする全体構造 認知機能実現のための認知アーキテクチャ 勉強会概要と発表資料 第5回 全脳アーキテクチャ勉強会 ~ 意思決定 深いゴール探索と深い強化学習の技術をヒントにして、前頭前野の機構の解明を目指す ~ Deep Learning とベイジアンネットと強化学習を組み合わせた機構による、 前頭前野周辺の計算論的モデルの構想 BDI ― モデル、アーキテクチャ、論理 ― 強化学習から見た意思決定の階層 勉強会概要と発表資料 第4回 全脳アーキテクチャ勉強会 ~ 機械学習と神経科学の融合の先に目指す超知能 ~ 全脳アーキテクチャ主旨説明 AI の未解決問題と Deep Learning 脳の主要な器官の機能とモデル 脳をガイドとして超脳知能に至る最速の道筋を探る 自然な知覚を支える脳情報表現の定量理解 脳型コンピュータの可能性 勉強会概要と発表資料 第3回 全脳アーキテクチャ勉強会 ~ 海馬:脳の自己位置推定と地図作成のアルゴリズム ~ 「SLAM の現状と鼠の海馬を模倣した RatSLAM」 「海馬神経回路の機能ダイナミクス」 「人工知能 (AI) 観点から想定する海馬回路の機能仮説」 勉強会概要と発表資料 第2回 全脳アーキテクチャ勉強会 ~ 大脳皮質と Deep Learning ~ 「大脳皮質と Deep Learning」 「視覚皮質の計算論的モデル ~ 形状知覚における図地分離と階層性 ~」 「Deep Learning 技術の今」 WBA の実現に向けて: 大脳新皮質モデルの視点から 勉強会概要と発表資料 第1回 全脳アーキテクチャ勉強会 ~ 機械学習と神経科学の融合の先に目指す超知能 ~ 勉強会開催の主旨説明 AI の未解決問題と Deep Learning 脳の主要な器官の機能とモデル 脳を参考として人レベル AI を目指す最速の道筋 勉強会概要と発表資料 全脳アーキテクチャ勉強会の開始背景(2013年12月) 人間の脳全体構造における知的情報処理をカバーできる全脳型 AI アーキテクチャを工学的に実現できれば、人間レベル、さらにそれ以上の人工知能が実現可能になります。これは人類社会に対して、莫大な富と利益をもたらすことが予見されます。例えば、検索や広告、自動翻訳や対話技術、自動運転やロボット、そして金融や経済、政治や社会など、幅広い分野に大きな影響を与えるでしょう。 私達は、この目的のためには、神経科学や認知科学等の知見を参考としながら、機能的に分化した脳の各器官をできるだけ単純な機械学習器として解釈し、それら機械学習器を統合したアーキテクチャを構築することが近道であると考えています。 従来において、こうした試みは容易ではないと考えられてきましたが、状況は変わりつつあります。すでに、神経科学分野での知見の蓄積と、計算機速度の向上を背景に、様々な粒度により脳全体の情報処理を再現/理解しようとする動きが欧米を中心に本格化しています。 また Deep Learning などの機械学習技術のブレークスルー、大脳皮質ベイジアンネット仮説などの計算論的神経科学の進展、クラウドなどの計算機環境が充実してきています。 こうした背景を踏まえるならば、全脳型 AI アーキテクチャの開発は世界的に早々に激化してくる可能性さえあります。 そこで私達は、2020年台前半までに最速で本技術を実現できるロードマップを意識しながら、この研究の裾野を広げていく必要があると考えています。 そしてこのためには、情報処理技術だけでなく、ある程度のレベルにおいて神経科学等の関連分野の知見を幅広く理解しながら、情熱をもってこの研究に挑む多くの研究者やエンジニアの参入が必要と考えています。

6/18 (日)

228d5ef46c6d09391e714d9da4cbde05 Innovation Meetup
NIPS、CVPR、ACLなどのトップカンファレンス採択論文を通じた若手研究者向け勉強会です
目的 本勉強会は、最新のAI、とりわけ機械学習、画像処理、自然言語処理などの技術に関して知見を深め、広げ、研究者同士でのネットワーク醸成を目的とするものです。 最近の人工知能に関する技術の発展は目覚しく、最新技術をキャッチアップし続けるためには、多くの方々との技術的な情報交換がますます重要だと考えます。これからの社会を研究者として担う若手人財の発展を目指し、またAI分野の研究をさらに盛り上げていくべく、多くの学生の方々に参加していただければ幸いです。 テーマ 今回の勉強会のテーマは、「最新技術の論文読み」です。以下のみに限定するものではありませんが、2016年以降の機械学習、画像処理、自然言語処理のトップカンファレンス(NIPS, CVPR, SIGGRAPH, ACLなど)を対象に、ご興味ある論文の内容を発表いただければと思います。 また本勉強会を主催する株式会社ABEJAは、2012年から独自にDeep Learningの研究を重ねて、先日は日本発の企業としては初となる、米国Nvidiaの「GPUベンチャー・プログラム」に採択、および資本提携を開始いたしました。社内の研究者も情報交換に参加いたしますので、当日はどうぞ宜しくお願いいたします。 参加について 参加の形式は、 聴講者枠 発表者枠 の2つがあります。勉強のためには自身で読んで発表するのが一番ですので、奮ってご参加いただければと思います。 connpassにログインいただき、聴講・発表を選択ください。 (今回は若手研究者の発展を目的とするため、学生を優先させていただきます。ご了承ください。) 日時 6/18(日)13:00 - 17:00 12:45より受付を開始します (勉強会終了後、18:00まで懇親会を予定しております。) 論文リスト(登録順) 発表者 論文タイトル peisuke PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation (CVPR2017) taka_tomo Improved Variational Autoencoders for Text Modeling using Dilated Convolutions (ICML2017) aimpast Recurrent Environment Simulator (ICLR2017) mizu_gucci Generalized Correspondence-LDA Models (GC-LDA) for Identifying Functional Regions in the Brain" (NIPS 2016) __Nonane__ AGA: Attribute Guided Augmentation (CVPR2017) yumatsuoka Y.Wen et al.:A Discriminative Feature Learning Approach for Deep Face Recognition. (eccv 2016). itomoki430 Learning Important Features Through Propagating Activation Differences (ICML 2017) 開催場所 株式会社ABEJA内、オープンスペース 東京都港区虎ノ門4-1-20 田中山ビル10階 南北線「六本木一丁目駅」より徒歩8分 日比谷線「神谷町駅」より徒歩6分 参加費 無料 (お酒・軽食を用意いたします) 発表について 1人30分以内を目安に8人程度の発表を予定しております。 内容としては、2016年以降の機械学習、画像処理、自然言語処理のトップカンファレンス(NIPS, CVPR, SIGGRAPH, ACLなど)が対象です。 1本の論文を読み込むのが通常のスタイルですが、複数本を纏めるサーベイのような形でも構いません。 無線LANについて 会場で用意いたします。 資料について 当日に、参加者全員が資料を読むことができるように、Slideshareなどへのアップロードを推奨しております。 Slide Share: http://www.slideshare.net/ 株式会社ABEJAリサーチャー(発表者)紹介 藤本敬介 1982年生まれ。2005年電気通信大学電気通信学部情報工学科卒業。 2010年同大学大学院情報工学専攻博士課程終了。博士(工学)。同年(株)日立製作所入社。 基礎研究所、中央研究所にて自律ロボット制御、機械学習、コンピュータビジョン、3次元形状処理の研究開発に従事。 2017年株式会社ABEJA入社。主にDeep Learningを用いた画像認識技術の開発に従事。平成26年度関東地方発明表彰受賞。 情報処理学会会員、情報処理学会論文誌編集委員。 高橋智洋 1985年生まれ。2013年京都大学大学院博士後期課程修了。大学院では理論宇宙物理学を専攻する。修了後、NTTデータ数理システムにて数理最適化に関する業務に従事。主に大規模離散最適化に関して、ソフトウェアの開発や個別コンサルティングを行う。数理最適化と並行し機械学習を独学。現在は、株式会社 ABEJA にて深層学習の調査や実装に従事する。博士(理学)。 蓑手智紀 1994年生まれ。東京都出身。10歳からプログラミングを学び始め、2006年にプログラミングコンテストにて小学生最優秀賞を受賞。高専在学時には情報通信を専攻しつつ世界最年少人工衛星開発団体に所属。高専卒業後、豊橋技術科学大学に編入学。学部4年では深層強化学習に関する研究で最優秀卒業研究発表賞を受賞。現在は株式会社ABEJAにて深層学習を中心とした研究・開発に従事。 運営会社について 2012年の設立当初より、国内のAI関連を専門とする大学教員陣との連携や、CVPRやICCVを初めとするトップカンファレンスへの参加を通じて、機械学習やコンピュータビジョンを中心とした研究開発に注力しています。その成果をもとに、先日は、日本法人として初となる、米国NVIDIAとの資本提携を行い、NVIDIAが提供する 「GPU ベンチャー・プログラム」にも採択をいただくことができました。 また、高度に技術を扱うことができる技術者の育成を目的として、社会人向けの機械学習技術セミナーなども開催しております。 https://www.abeja.asia/news/dlseminar/ 更に今後の日本国としての技術の発展のために、若い研究者の方々の支援にも注力するために本勉強会を実施いたします。