r153 (@r153)


参加する勉強会



過去の勉強会


065d9c3a04fcc72e941b60c63551da0e NGK2017B
昼の部(LT大会)の参加募集ページです。 イベントの詳細については NGK2017Bトップページをご覧ください。 LTタイムテーブル 全日のタイムテーブルはこちらを御覧ください。 発表順は当日発表者の希望を考慮し、11/25(土)に決定いたします。 →発表者の希望を考慮した上で、こちらのコードで生成しました。 時間 発表者 タイトル 13:00- 開場 14:00-14:10 オープニング LT#1 14:10-14:40 kazuki_kachi プロトコル的な話 ysk-tngc Mobile Act の紹介 terurou Vue.jsをHaxeで yoshihiro503 yusuke_kokubo 名古屋に住みながら毎週京都や東京や福岡に通う生活 休憩 14:40-14:55 LT#2 14:55-15:25 youku_s ElmでWebサービスを作るふわっとしたお話 y_taka_23 LiquidHaskell で普通の型システムの上を行け tinymouse_jp Ryuichirou 僕が小規模なコミュニティを運営し続けるときに考えたこと eitoball 休憩 15:25-15:45 LT#3 15:45-16:15 youhei_yamaguchi 毎朝体操杯 in NGK2017B maeda_ (欠員) niwasawa コードを1行も書かずに iOS アプリをリリースできるのか? totomo1217 ヤフー名古屋オフィスの紹介 休憩 16:15-16:40 LT#4 16:40-17:10 kawaji_scratch AWS最大のイベント re:Invent2017を参加せずに語る sqm8 ぜったい当たる宝くじの買い方 kaizen_nagoya bleis-tift PCさえあればいい。 sh-ogawa 受託、SES、WEBと経験したので 振返って比較してみた 休憩 17:10-17:30 LT#5 17:30-18:00 MasakiOhta 藤井智康 キミは小宇宙(コスモ)を感じたことがあるか! Kuxumarin いんたーんしっぷゆるふわ所感 mzp Inside InputMethod katzueno 2020年小学校英語 & プログラミング必修化記念。GitHub で使える英会話講座 休憩 18:00-18:20 LT#5 18:20-18:50 aua2008 mituhiromatuura GR-PEACH & TOPPERS/ASP で電子工作 noob Haskell × Elm × Kotlin で Android アプリ作った話 smogami STRANGER TYPINGS garriguejej 名大プログラミングコンテストの宣伝 18:50-19:05 クロージング、告知等 19:05-19:25 夜の部会場へ移動(Googleマップ) 一般LT枠希望の方へ 10年目の節目を迎える今回は、IT系コミュニティで交流し、名古屋のIT系コミュニティを盛り上げたい という初心に立ち返り、より様々な方の発表が聞けることを目指しています。 これまで発表してくださった熱心な方々の多くが、.netや関数型プログラミングなどの比較的近しいコミュニティに所属していることもあってか、発表者や参加者がややかたよってきました。ですが、NGK2016Bではモバイル、IoT、クラウド、機械学習など、名古屋の多様なITコミュニティの方が発表してくださいました。 そこで、これまで以上に幅広い発表が聞けるように、LT枠は早い者勝ちではなく 抽選 とします。できるだけバラエティに富むように、近い内容(例:あるプログラミング言語の紹介が2人かさなった、など)のLTはどちらかのみ残すなど、抽選に一部かたよりをつける場合がございます。恣意的な選別は行わず、できるだけLT枠を増やす方向で検討しています。 スポンサーLT枠希望の方へ 例年どおり、求人案内や製品紹介などが可能なスポンサーLT枠は別途もうけておりますので、ご希望の方は管理者までお問い合わせください。

7/14 (金)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
ゼロから作る Deep Learning 読書会+ハンズオン その4
機械学習 名古屋 分科会 機械学習名古屋 勉強会の分科会です。 この分科会では、より理論・実装に重きを置いた勉強をしていきます。 機械学習エンジニア として仕事をしている/仕事をしたい人 機械学習(Deep Learning)の 理論を知りたい 人 ぜひ、ご参加ください。 (最新動向・実践等は、通常会(次回:第12回(2017/09 上旬予定))で扱います) 動画配信について 動画配信については、現在調整中です。 『ゼロから作る Deep Learning』読書会+ハンズオン 分科会のテーマとして、引き続き『ゼロから作る Deep Learning』の読書会を行います。 今回は『4章 ニューラルネットワークの学習』からです。 進め方 参加者でさらっと読み合わせる(担当者は決めずその場で回し読み) Jupyter notebook でコードを実際に書いて動作確認をする(ハンズオン) みんなで疑問点を質問、解消していく 機械学習エンジニア として実際に仕事をしている人から解説もらってハッピーになる ハンズオンについて 以下の環境を前提とします: Python / Ruby / Julia 等いずれかの環境: Python 3.x 以上 NumPy Matplotlib(グラフを表示するのに必要) Ruby 2.1 以上 Numo::NArray Numo::Gnuplot(グラフを表示するのに必要) Julia 0.5 以上 PyPlot または Gadfly 等(グラフを表示するのに必要) その他、あなたがお使いの言語環境(行列計算(ベクトル計算・テンソル計算含む)の出来るライブラリとグラフ描画ライブラリを備えたもの) Jupyter notebook(リアルタイムに打ち込みながら動作確認します) 以上の環境(Python+Ruby+Julia+Jupyter)をまとめた 勉強会用 Dockerイメージ を用意しています!ぜひご利用ください! (使い方は、使い方解説ページ や、第1回の配信動画(録画)を参考にしてください) (第3回までの参加者向け:勉強会用 Dockerイメージ(Julia/Ruby のバージョンアップ)、および勉強会用リポジトリ(3章の内容の反映、および MNIST データセット利用スクリプト追加)を更新しました! イメージおよびリポジトリを更新(docker pull ~ / git pull)しておいてください) 内容 補足 会場について ヤフー株式会社様より、会場についての注意事項 ゼロから作る Deep Learning第4章の読み合わせ+サンプル実行確認 Jupyter notebook でハンズオン適宜疑問点の質問も受付 (休憩) 20:00 までに1回休憩を挟む予定 読み合わせ+ハンズオン(続き) LT1 「AnnexML: Approximate Nearest Neighbor Search for Extreme Multi-label Classification」ヤフー株式会社 リードサイエンティスト 田頭 幸浩 様 LT2 希望者がいれば※1 連絡事項 懇親タイム ~21:30 頃まで 片付け ※1 LT希望者はイベント管理者までメッセージください。必ずしも希望に添えられないかもしれないので予めご了承ください。 会場 ヤフー株式会社様のご厚意により、今回も会場をご提供いただきました! ヤフー株式会社 名古屋オフィス 会議室 愛知県名古屋市西区名駅2丁目27−8 名古屋プライムセントラルタワー4F(地図) JR・名鉄・近鉄・地下鉄 名古屋駅 徒歩5分(地下鉄1番出口から) 注意事項 できる限り18:20~18:40の間にお越しください。会場の4Fまで直接お越しください。 4F 入り口にて、connpass の「受付票」をご提示ください。イベントページから「受付票を見る」リンククリックで表示できます。事前に印刷/その場でスマホ等で表示してご提示いただき、係員の誘導にしたがってください。 遅れてくる場合も、20:00までに会場の4Fまでお越しいただき、警備員に勉強会参加の旨を伝え、「受付票」を提示してください。20:00以降は入場は出来ません。 終了時間はあくまでも目安ですので、前後する可能性があります。 書籍「ゼロから作る Deep Learning」はご持参ください。 電子書籍版もあります。→ https://www.oreilly.co.jp/ebook/ から「ゼロから作る」で検索 PCをご持参ください。実際にコードを打ち込んで動作確認していただく予定です。 無線LANの提供はあります。 大画面モニタはあります。 今後の予定 #5 2017/08/04(金)(予定)

6/9 (金)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
ゼロから作る Deep Learning 読書会+ハンズオン その3
機械学習 名古屋 分科会 機械学習名古屋 勉強会の分科会です。 この分科会では、より理論・実装に重きを置いた勉強をしていきます。 機械学習エンジニア として仕事をしている/仕事をしたい人 機械学習(Deep Learning)の 理論を知りたい 人 ぜひ、ご参加ください。 (最新動向・実践等は、通常会(次回:第11回(2017/07/02(日)予定))で扱います) 参加枠について 今回から、参加枠を1つにしました! 会場(会議室)は、入り口で受付票を提示して誘導にしたがってください。 動画配信について 今回は、動画のライブ配信は実施いたしません。 録画して後日公開予定です。 『ゼロから作る Deep Learning』読書会+ハンズオン 分科会のテーマとして、引き続き『ゼロから作る Deep Learning』の読書会を行います。 今回は『3章 ニューラルネットワーク』の「3.2 活性化関数」からです。 進め方 参加者でさらっと読み合わせる(担当者は決めずその場で回し読み) Jupyter notebook でコードを実際に書いて動作確認をする(ハンズオン) みんなで疑問点を質問、解消していく 機械学習エンジニア として実際に仕事をしている人から解説もらってハッピーになる ハンズオンについて 以下の環境を前提とします: Python / Ruby / Julia 等いずれかの環境: Python 3.x 以上 NumPy Matplotlib(グラフを表示するのに必要) Ruby 2.1 以上 Numo::NArray Numo::Gnuplot(グラフを表示するのに必要) Julia 0.5 以上 PyPlot または Gadfly 等(グラフを表示するのに必要) その他、あなたがお使いの言語環境(行列計算(ベクトル計算・テンソル計算含む)の出来るライブラリとグラフ描画ライブラリを備えたもの) Jupyter notebook(リアルタイムに打ち込みながら動作確認します) 以上の環境(Python+Ruby+Julia+Jupyter)をまとめた 勉強会用 Dockerイメージ を用意しています!ぜひご利用ください! (使い方は、使い方解説ページ や、第1回の配信動画(録画)を参考にしてください) (第2回までの参加者向け:勉強会用 Dockerイメージ を更新しました(主に Ruby/IRuby の追加)! イメージを更新(docker pull ~)しておいてください) 内容 補足 会場について ヤフー株式会社様より、会場についての注意事項 ゼロから作る Deep Learning第3章の読み合わせ+サンプル実行確認 Jupyter notebook でハンズオン適宜疑問点の質問も受付 (休憩) 20:00 までに1回休憩を挟む予定 読み合わせ+ハンズオン(続き) LT 希望者がいれば※1 連絡事項 片付け ※1 LT希望者はイベント管理者までメッセージください。必ずしも希望に添えられないかもしれないので予めご了承ください。 会場 ヤフー株式会社様のご厚意により、今回も会場をご提供いただきました! ヤフー株式会社 名古屋オフィス 会議室 愛知県名古屋市西区名駅2丁目27−8 名古屋プライムセントラルタワー4F(地図) JR・名鉄・近鉄・地下鉄 名古屋駅 徒歩5分(地下鉄1番出口から) 注意事項 できる限り18:20~18:40の間にお越しください。会場の4Fまで直接お越しください。 4F 入り口にて、connpass の「受付票」をご提示ください。イベントページから「受付票を見る」リンククリックで表示できます。事前に印刷/その場でスマホ等で表示してご提示ください。 遅れてくる場合も、20:00までに会場の4Fまでお越しいただき、警備員に勉強会参加の旨を伝え、「受付票」を提示してください。20:00以降は入場は出来ません。 終了時間はあくまでも目安ですので、前後する可能性があります。 書籍「ゼロから作る Deep Learning」はご持参ください。 電子書籍版もあります。→ https://www.oreilly.co.jp/ebook/ から「ゼロから作る」で検索 PCをご持参ください。実際にコードを打ち込んで動作確認していただく予定です。 無線LANの提供はあります。 大画面モニタはあります。 今後の予定 #4 2017/07/14(金)(予定)

5/12 (金)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
ゼロから作る Deep Learning 読書会+ハンズオン その2
機械学習 名古屋 分科会 機械学習名古屋 勉強会の分科会です。 この分科会では、より理論・実装に重きを置いた勉強をしていきます。 機械学習エンジニア として仕事をしている/仕事をしたい人 機械学習(Deep Learning)の 理論を知りたい 人 ぜひ、ご参加ください。 (最新動向・実践等は、通常会(次回:第10回)で扱います) 参加枠について 現在、「一般参加」「サテライト1」「サテライト2」の3つの参加枠が存在します。 どちらも会場は同じビルの同じフロア(別会議室)です。 司会進行は、大会議室側(一般参加枠側)で行います。収容人数とそれ以外に各参加枠の違いはありません。 各会議室は、TV会議システムで繋がっています。質疑応答等はリアルタイムにやり取りできます。 他枠の補欠の方で、空いているサテライト枠に切り替えたい場合、一旦参加申込をキャンセルして新しい枠で参加登録し直す必要がございます。自動で空いている枠への振り分け等はされませんのでご注意ください。 動画配信について 当日、Facebook Live を利用して勉強会の動画配信を行います。 参加出来なかった方も、ご自宅や職場で勉強会の様子をご覧いただけます(正常に視聴するには Facebook にログインする必要があるかもしれません)。 ライブ配信URLは当日、このイベントページおよびTwitterでお知らせします。 また動画は勉強会終了後、機械学習名古屋 の Facebookページ 内で視聴できるようになります。 https://www.facebook.com/mlnagoya/videos/vb.1734757813481761/1751312885159587/?type=2&theater¬if_t=like¬if_id=1494582138228018 『ゼロから作る Deep Learning』読書会+ハンズオン 分科会のテーマとして、引き続き『ゼロから作る Deep Learning』の読書会を行います。 今回は『2章 パーセプトロン』からです。 進め方 参加者でさらっと読み合わせる(担当者は決めずその場で回し読み) Jupyter notebook でコードを実際に書いて動作確認をする(ハンズオン) みんなで疑問点を質問、解消していく 機械学習エンジニア として実際に仕事をしている人から解説もらってハッピーになる ハンズオンについて 以下の環境を前提とします: Python 3.x 以上 NumPy Matplotlib(グラフを表示するのに必要) Jupyter notebook(リアルタイムに打ち込みながら動作確認します) 以上の環境をまとめた 勉強会用 Dockerイメージ を用意しています!ぜひご利用ください! (使い方は、使い方解説ページ や、第1回の配信動画(録画)を参考にしてください) 内容 補足 参加者自己紹介 1人あたり1分程度で簡単に※1 会場について ヤフー株式会社様より、会場についての注意事項 ゼロから作る Deep Learning第2章の読み合わせ+サンプル実行確認 Jupyter notebook でハンズオン適宜疑問点の質問も受付 (休憩) 20:00 までに1回休憩を挟む予定 (ゼロから作る Deep Learning第3章の読み合わせ) ※時間が余れば最初の方だけ LT1 『ゼロから作る Deep Learning』の内容をPython 以外の言語でやってみた話(仮)by niwasawa (LT2) 希望者がいて時間が余れば※2 連絡事項 片付け 会議室の原状復帰にご協力をお願いします ※1 人数が多い場合は省略いたします。 ※2 LT希望者はイベント管理者までメッセージください。必ずしも希望に添えられないかもしれないので予めご了承ください。 会場 ヤフー株式会社様のご厚意により、今回も会場をご提供いただきました! ヤフー株式会社 名古屋オフィス 会議室 愛知県名古屋市西区名駅2丁目27−8 名古屋プライムセントラルタワー4F(地図) JR・名鉄・近鉄・地下鉄 名古屋駅 徒歩5分(地下鉄1番出口から) 注意事項 できる限り18:30~18:50の間にお越しください。会場の4Fまで直接お越しください。 4F 入り口にて、connpass の「受付票」をご提示ください。イベントページから「受付票を見る」リンククリックで表示できます。事前に印刷/その場でスマホ等で表示してご提示ください。 遅れてくる場合も、20:00までに会場の4Fまでお越しいただき、警備員に勉強会参加の旨を伝え、「受付票」を提示してください。20:00以降は入場は出来ません。 終了時間はあくまでも目安ですので、前後する可能性があります。 書籍「ゼロから作る Deep Learning」はご持参ください。 電子書籍版もあります。→ https://www.oreilly.co.jp/ebook/ から「ゼロから作る」で検索 PCをご持参ください。実際にコードを打ち込んで動作確認していただく予定です。 無線LANの提供はあります。 大画面モニタはあります。

4/17 (月)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
ゼロから作る Deep Learning 読書会+ハンズオン その1
機械学習 名古屋 分科会 機械学習名古屋 勉強会の分科会です。 この分科会では、より理論・実装に重きを置いた勉強をしていきます。 機械学習エンジニア として仕事をしている/仕事をしたい人 機械学習(Deep Learning)の 理論を知りたい 人 ぜひ、ご参加ください。 (最新動向・実践等は、通常会(次回:第10回)で扱います) 参加枠について 現在、「一般参加」「サテライト1」「サテライト2」の3つの参加枠が存在します。 どちらも会場は同じビルの同じフロア(別会議室)です。 司会進行は、大会議室側(一般参加枠側)で行います。収容人数とそれ以外に各参加枠の違いはありません。 各会議室は、TV会議システムで繋がっています。質疑応答等はリアルタイムにやり取りできます。 一般参加枠で補欠の方で、サテライト枠に切り替えたい場合、一旦参加申込をキャンセルして新しい枠で参加登録し直す必要がございます。自動で空いている枠への振り分け等はされませんのでご注意ください。 動画配信について 当日、Facebook Live を利用して勉強会の動画配信を行います。 参加出来なかった方も、ご自宅や職場で勉強会の様子をご覧いただけます(正常に視聴するには Facebook にログインする必要があるかもしれません)。 ライブ配信URLは当日、このイベントページおよびTwitterでお知らせします。 また動画は勉強会終了後、機械学習名古屋 の Facebookページ 内で視聴できるようになります。 ※ただいま動画配信中! https://www.facebook.com/mlnagoya/videos/1740496489574560/ 『ゼロから作る Deep Learning』読書会+ハンズオン 分科会のテーマとして、初回からしばらく、書籍『ゼロから作る Deep Learning』の読書会を行います。 進め方 参加者でさらっと読み合わせる(担当者は決めずその場で回し読み) Jupyter notebook でコードを実際に書いて動作確認をする(ハンズオン) みんなで疑問点を質問、解消していく 機械学習エンジニア として実際に仕事をしている人から解説もらってハッピーになる 内容 補足 参加者自己紹介 1人あたり1分程度で簡単に※1 会場について ヤフー株式会社様より、会場についての注意事項 オリエンテーション 初回ということで、勉強会の方向性等の説明をします Python 環境の確認 ※2 ゼロから作る Deep Learning第1章の読み合わせ+サンプル実行確認 Jupyter notebook でハンズオン適宜疑問点の質問も受付 次回以降のスケジュールについて ※3 (LT) 希望者がいて時間が余れば 片付け 会議室の原状復帰にご協力をお願いします ※1 人数が多い場合は省略いたします。 ※2 参加者ごとの環境統一のため、勉強会用の Dockerイメージ を作成しました! → antimon2/mlnsc-dlscratch ↑の使い方解説ページ ぜひご利用ください! ※3 第2回以降は、毎月第1金曜日(第2回は第2金曜日)に開催予定。 第2回:2017/05/12(金)(予定) 第3回:2017/06/02(金)(予定) 会場 ヤフー株式会社様のご厚意により、会場をご提供いただきました! ヤフー株式会社 名古屋オフィス 会議室 愛知県名古屋市西区名駅2丁目27−8 名古屋プライムセントラルタワー4F(地図) JR・名鉄・近鉄・地下鉄 名古屋駅 徒歩5分(地下鉄1番出口から) 注意事項 できる限り18:20~18:40の間にお越しください。会場の4Fまで直接お越しください。 4F 入り口にて、connpass の「受付票」をご提示ください。イベントページから「受付票を見る」リンククリックで表示できます。事前に印刷/その場でスマホ等で表示してご提示ください。 遅れてくる場合も、20:00までに会場の4Fまでお越しいただき、警備員に勉強会参加の旨を伝え、「受付票」を提示してください。20:00以降は入場は出来ません。 終了時間はあくまでも目安ですので、前後する可能性があります。 書籍「ゼロから作る Deep Learning」はご持参ください。 電子書籍版もあります。→ https://www.oreilly.co.jp/ebook/ から「ゼロから作る」で検索 PCをご持参ください。実際にコードを打ち込んで動作確認していただく予定です。 無線LANの提供はあります。 大画面モニタはあります。