n-kats (@n_kats_)


参加する勉強会

6/30 (土)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★ スポンサーさまご紹介 機械学習名古屋の勉強会はスポンサーさまのご協力をいただき開催しております。 どなたでも無料で参加でき、懇親会費用も一部、ご負担頂いております。 来栖川電算さま  会場費用全額と懇親会費用の一部負担 株式会社groovesさま  懇親会費用の一部負担 ☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★ 勉強会について 前回同様、前半ハンズオン、後半発表(LT)の2部構成を予定しています。 1. OpenAI Gym を使ったゲームの強化学習ハンズオン 前回に続き、OpenAI Gym を使ったゲームの強化学習ハンズオンを行います。 OpenAI Gym は、OpenAI の提供する強化学習の開発・評価用のプラットフォームです。前回はこの OpenAI Gym が提供するシュミレーション環境を利用して、ゲームの学習を通じて強化学習に触れあおう!というテーマでハンズオンを行いました。 今回はそれをもう少しだけ掘り下げてみたいと思います。 環境等(準備中) ハンズオン資料 作成中 前回のハンズオン資料 資料 https://qiita.com/n_kats_/items/932ca8dccab66f3255ed プログラム https://github.com/n-kats/MLN_201804 はじめに資料を読みながら流れを解説します。その後、プログラムをもとに手を動かしてもらおうと思います。 2. 発表(LT) 何か発表をしていただける方は、ご連絡をお願いします。 機械学習/ディープラーニングに関することや、関連する内容ならなんでもOKです。 antimon2 Julia で強化学習(仮) hashikawa プログラミング教育とAIの導入 nishie 岡山から飛入り!建築業界もAIが欲しいぜ! 時間割 13:00-15:00 ハンズオン(休憩含む) 15:00-15:30 hashikawa プログラミング教育とAIの導入 15:30-15:50 antimon2 Julia で強化学習(仮) 15:50-16:10 nishie 岡山から飛入り!建築業界もAIが欲しいぜ! 会場について 名古屋市中区栄4丁目16番29号 中統ビル 4001 飲食可能(ゴミはお持ち帰りください) Wi-fi なし(テザリング環境等は各自でご用意をお願いいたします) 電源あり(電源タップケーブルを持ってきていただけると助かります) 勉強会開始前はバスケットボールのゲームをスクリーンに流しています。 懇親会について 勉強会後に、懇親会を予定しています。 こちらも来栖川電算様とgrooves様が一部、負担をしていただけます。 ぜひ、ご参加ください。 懇親会は下記イベントページより申し込みをお願いします。 https://machine-learning.connpass.com/event/91704/ 当日の申し込みは行えませんのでご了承ください。 お問い合わせについて お問い合わせのある方は、このページの「イベントへのお問い合わせ」よりお気軽にお問い合わせください。 フィードからのお問い合わせには気付かずに返信ができない場合がありますのでご了承ください。

7/12 (木)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
論文紹介LT大会その4
機械学習 名古屋 研究会 モチベーション 月に1本は論文を読もう! 機械学習/AI 界隈では、日々の研究成果が『論文』として1日に何本も発表されています。 全ての論文を個人で追うのは無理でも、月に1本くらいならなんとかなるはず。 それをみんなで共有すれば、効率良く何本もの論文にふれあえる! そこで、機械学習名古屋 は通常の勉強会とは別の 研究会 を立ち上げました。 月1程度で集まって、みんなで『読んだ論文の共有』をしましょう! 進め方 参加者は、読みたい論文 を申告する。 参加時アンケートで『読みたい論文』を必須項目としています。必ず 読みたい論文 を用意してから参加を申し込んでください。 論文を開催日時までに読んで、1ページに簡単にまとめる(※1)。 当日、発表(LT)する。 ↑を肴に◯◯(※2)。 ※1:すぐ後で解説する「論文まとめについて」 を参照してください。 ※2:質疑応答議論ツッコミ等含む 論文まとめについて 論文まとめテンプレートを用意しています↓ 論文まとめテンプレート これは 落合陽一氏の論文まとめ方(あるスライドの65ページ目) を参考に Markdown 1ページに落とし込んだものです。 こちらを利用して、Markdown でまとめを作成していただき、研究会の GitHub リポジトリ に登録(プルリクを送る形でリクエスト)、という流れになります。 具体的には、↓の「第1回論文まとめディレクトリ」を参照してください。 → 第1回論文まとめディレクトリ 参加者は、アンケートに回答した『読みたい論文』を読んで、当日までにこのテンプレートを利用した Markdown によるまとめを作成して頂き、研究会の GitHub リポジトリ に登録(プルリクを送る形でリクエスト)してください。 (GitHub を使えない等の場合は、当日までに論文をまとめた .md ファイルを管理者宛に送付(もしくは共有URLを提示)いただければ、プルリク代行いたします) まとめ方の考え方やコツは、上述の「第1回論文まとめディレクトリ」の各まとめを見たり、以下に挙げる参考サイトなどを参考にしてください。 参考 高速で論文がバリバリ読める落合先生のフォーマットがいい感じだったのでメモ - 書架とラフレンツェ パワポ版の落合先生流論文要旨のテンプレートを作ったので配布する - 一人ぼっちのライフハック生活 発表について 1人あたりの持ち時間は「発表5分」+「質疑応答5分」の10分を目安とします(5分完全打ち切りLTではありません)。 2時間で参加者12人全員が発表(≒12部の論文が参加者全員で共有)できるよう、ご協力をお願いします。 今回の発表内容 発表者 論文 … … 持ち物 『論文を読む!』という前向きな気持ち 読んだ論文をまとめて『あとは当日発表がんばるぞ!』という気構え 参加枠について 紹介枠なくしました。みなさん『一般枠』で申し込んでください。 会場 有限会社 来栖川電算 会議室 名古屋市中区新栄1-29-23 アーバンドエル新栄2階 電源・Wi-Fiあり


過去の勉強会

6/14 (木)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
論文紹介LT大会その3
機械学習 名古屋 研究会 モチベーション 月に1本は論文を読もう! 機械学習/AI 界隈では、日々の研究成果が『論文』として1日に何本も発表されています。 全ての論文を個人で追うのは無理でも、月に1本くらいならなんとかなるはず。 それをみんなで共有すれば、効率良く何本もの論文にふれあえる! そこで、機械学習名古屋 は通常の勉強会とは別の 研究会 を立ち上げました。 月1程度で集まって、みんなで『読んだ論文の共有』をしましょう! 進め方 参加者は、読みたい論文 を申告する。 参加時アンケートで『読みたい論文』を必須項目としています。必ず 読みたい論文 を用意してから参加を申し込んでください。 論文を開催日時までに読んで、1ページに簡単にまとめる(※1)。 当日、発表(LT)する。 ↑を肴に◯◯(※2)。 ※1:すぐ後で解説する「論文まとめについて」 を参照してください。 ※2:質疑応答議論ツッコミ等含む 論文まとめについて 論文まとめテンプレートを用意しています↓ 論文まとめテンプレート これは 落合陽一氏の論文まとめ方(あるスライドの65ページ目) を参考に Markdown 1ページに落とし込んだものです。 こちらを利用して、Markdown でまとめを作成していただき、研究会の GitHub リポジトリ に登録(プルリクを送る形でリクエスト)、という流れになります。 具体的には、↓の「第1回論文まとめディレクトリ」を参照してください。 → 第1回論文まとめディレクトリ 参加者は、アンケートに回答した『読みたい論文』を読んで、当日までにこのテンプレートを利用した Markdown によるまとめを作成して頂き、研究会の GitHub リポジトリ に登録(プルリクを送る形でリクエスト)してください。 (GitHub を使えない等の場合は、当日までに論文をまとめた .md ファイルを管理者宛に送付(もしくは共有URLを提示)いただければ、プルリク代行いたします) まとめ方の考え方やコツは、上述の「第1回論文まとめディレクトリ」の各まとめを見たり、以下に挙げる参考サイトなどを参考にしてください。 参考 高速で論文がバリバリ読める落合先生のフォーマットがいい感じだったのでメモ - 書架とラフレンツェ パワポ版の落合先生流論文要旨のテンプレートを作ったので配布する - 一人ぼっちのライフハック生活 発表について 1人あたりの持ち時間は「発表5分」+「質疑応答5分」の10分を目安とします(5分完全打ち切りLTではありません)。 2時間で参加者12人全員が発表(≒12部の論文が参加者全員で共有)できるよう、ご協力をお願いします。 今回の発表内容 発表者 論文 wkluk-hk Cyclical Learning Rates for Training Neural Networks BrickLego Mask R-CNN nharu1san Universal Sentence Encoder yokoi Algorithms for Inverse Reinforcement Learning kmiwa Recall Traces: Backtracking Models for Efficient Reinforcement Learning てら Neural Text Generation: Past, Present and Beyond ToshiakiSakurai An automatic flower classification approach using machine learning algorithms antimon2 Input and Weight Space Smoothing for Semi-supervised Learning n-kats Self-Attention Generative Adversarial Networks yunishimura Face Image Generation System using Attributes Information with DCGANs 持ち物 『論文を読む!』という前向きな気持ち 読んだ論文をまとめて『あとは当日発表がんばるぞ!』という気構え 参加枠について 紹介枠は、管理者(共催者の誰か)から紹介を受けた人用の枠です。アンケートで『誰からの紹介か』を必ず記入して申し込んでください。 よく分からない方は『一般枠』で申し込んでください。 会場 有限会社 来栖川電算 会議室 名古屋市中区新栄1-29-23 アーバンドエル新栄2階 電源・Wi-Fiあり

5/17 (木)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
論文紹介LT大会その2
機械学習 名古屋 研究会 モチベーション 月に1本は論文を読もう! 機械学習/AI 界隈では、日々の研究成果が『論文』として1日に何本も発表されています。 全ての論文を個人で追うのは無理でも、月に1本くらいならなんとかなるはず。 それをみんなで共有すれば、効率良く何本もの論文にふれあえる! そこで、機械学習名古屋 は通常の勉強会とは別の 研究会 を立ち上げました。 月1程度で集まって、みんなで『読んだ論文の共有』をしましょう! 進め方 参加者は、読みたい論文 を申告する。 参加時アンケートで『読みたい論文』を必須項目としています。必ず 読みたい論文 を用意してから参加を申し込んでください。 論文を開催日時までに読んで、1ページに簡単にまとめる(※1)。 当日、発表(LT)する。 ↑を肴に◯◯(※2)。 ※1:すぐ後で解説する「論文まとめについて」 を参照してください。 ※2:質疑応答議論ツッコミ等含む 論文まとめについて 論文まとめテンプレートを用意しています↓ 論文まとめテンプレート これは 落合陽一氏の論文まとめ方(あるスライドの65ページ目) を参考に Markdown 1ページに落とし込んだものです。 こちらを利用して、Markdown でまとめを作成していただき、研究会の GitHub リポジトリ に登録(プルリクを送る形でリクエスト)、という流れになります。 具体的には、↓の「第1回論文まとめディレクトリ」を参照してください。 → 第1回論文まとめディレクトリ 参加者は、アンケートに回答した『読みたい論文』を読んで、当日までにこのテンプレートを利用した Markdown によるまとめを作成して頂き、研究会の GitHub リポジトリ に登録(プルリクを送る形でリクエスト)してください。 (GitHub を使えない等の場合は、当日までに論文をまとめた .md ファイルを管理者宛に送付(もしくは共有URLを提示)いただければ、プルリク代行いたします) まとめ方の考え方やコツは、上述の「第1回論文まとめディレクトリ」の各まとめを見たり、以下に挙げる参考サイトなどを参考にしてください。 参考 高速で論文がバリバリ読める落合先生のフォーマットがいい感じだったのでメモ - 書架とラフレンツェ パワポ版の落合先生流論文要旨のテンプレートを作ったので配布する - 一人ぼっちのライフハック生活 発表について 1人あたりの持ち時間は「発表5分」+「質疑応答5分」の10分を目安とします(5分完全打ち切りLTではありません)。 2時間で参加者12人全員が発表(≒12部の論文が参加者全員で共有)できるよう、ご協力をお願いします。 今回の発表内容 発表者 論文 KaazTech Log File Anomaly Detection kmiwa Continuous Deep Q-Learning with Model-based Acceleration nharu1san Enhance word representation for out-of-vocabulary on Ubuntu dialogue corpus aua2008 Intelligent Collaborative Information Retrieval ToshiakiSakurai Deep-Learning-Based Approach for Automated Surface Inspection antimon2 Semantic Adversarial Examples n-kats FSSD: Feature Fusion Single Shot Multibox Detector MasayukiOnClouds LIFT: Learned Invariant Feature Transform 持ち物 『論文を読む!』という前向きな気持ち 読んだ論文をまとめて『あとは当日発表がんばるぞ!』という気構え 参加枠について 紹介枠は、管理者(共催者の誰か)から紹介を受けた人用の枠です。アンケートで『誰からの紹介か』を必ず記入して申し込んでください。 よく分からない方は『一般枠』で申し込んでください。 会場 有限会社 来栖川電算 会議室 名古屋市中区新栄1-29-23 アーバンドエル新栄2階 電源・Wi-Fiあり

4/21 (土)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
懇親会の案内です
☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★ スポンサーさまご紹介 機械学習名古屋の勉強会はスポンサーさまのご協力をいただき開催しております。 どなたでも無料で参加でき、懇親会費用も一部、ご負担頂いております。 来栖川電算さま  会場費用全額と懇親会費用の一部負担 株式会社groovesさま  懇親会費用の一部負担 ☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★ 懇親会について 勉強会のあとに、いつものように懇親会を行います。 最近、人数が多くなってきたので、事前把握のためにこちらで参加者を募集させていただきます。 どなたでも参加できますので、ぜひ、ご参加ください! この懇親会は、費用の一部を来栖川電算さまと株式会社groovesさまが費用の一部をご負担頂けます 場所・日時 豊丸水産 名古屋伏見店 https://www.hotpepper.jp/strJ001098964/map/ 04/21 17:00- 2時間ほど 補足 4月17日夜に人数確定させます。 それ以降のキャンセルはお控えください。

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★ スポンサーさまご紹介 機械学習名古屋の勉強会はスポンサーさまのご協力をいただき開催しております。 どなたでも無料で参加でき、懇親会費用も一部、ご負担頂いております。 来栖川電算さま  会場費用全額と懇親会費用の一部負担 株式会社groovesさま  懇親会費用の一部負担 ☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★ 勉強会について 前回同様、前半ハンズオン、後半発表(LT)の2部構成を予定しています。 1. OpenAI Gym を使ったゲームの強化学習ハンズオン OpenAI Gym は、OpenAI の提供する強化学習の開発・評価用のプラットフォームです。 今回はこの OpenAI Gym が提供するシュミレーション環境を利用して、ゲームの学習を通じて強化学習に触れあおう!というテーマでハンズオンを行います。 環境等 ※Python 等は事前にインストール or DockerイメージDL で準備しておいてください。 以下の環境を前提とします: Dockerを利用しない場合 windowsでは難点が多いため、virtualboxなどの仮想環境でubuntu16.04を使うことをおすすめします。 gymには依存するものがあり、インストールする必要があります。 Macの場合 brew install cmake boost boost-python sdl2 swig wget ubuntu14.04の場合 apt-get install -y python-numpy python-dev cmake zlib1g-dev libjpeg-dev xvfb libav-tools xorg-dev python-opengl libboost-all-dev libsdl2-dev swig python環境は次が必要です。 Python 3.x (3.5 以上を推奨) pip install gym pip install "gym[atari]" pip install chainerrl Dockerを利用する場合 docker pull nkats/mln_gym で環境でダウンロードしてください。 ハンズオン資料 資料 https://qiita.com/n_kats_/items/932ca8dccab66f3255ed プログラム https://github.com/n-kats/MLN_201804 はじめに資料を読みながら流れを解説します。その後、プログラムをもとに手を動かしてもらおうと思います。 2. 発表(LT) 何か発表をしていただける方は、ご連絡をお願いします。 機械学習/ディープラーニングに関することや、関連する内容ならなんでもOKです。 時間割 13:00-15:00 ハンズオン(休憩含む) 15:10-15:25 Yamazakiさん Dockerについて 15:25-15:55 TakaAdachi 害獣識別の機械学習 15:55-16:00 《スポンサーLT》Forkwell サービスの紹介 16:00-16:20 antimon2 たぶんJulia関連 会場について ※前回と部屋番号が異なります。ご注意ください。 オフィスパーク伏見・りそな名古屋ビル 8D 地下鉄伏見駅直結! 飲食可能(ゴミはお持ち帰りください) Wi-fi なし(テザリング環境等は各自でご用意をお願いいたします) 電源あり(電源タップケーブルを持ってきていただけると助かります) 勉強会開始前はバスケットボールのゲームをスクリーンに流しています。 懇親会について 勉強会後に、懇親会を予定しています。 こちらも来栖川電算様とgrooves様が一部、負担をしていただけます。 ぜひ、ご参加ください。

4/12 (木)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
論文紹介LT大会その1
機械学習 名古屋 研究会 モチベーション 月に1本は論文を読もう! 機械学習/AI 界隈では、日々の研究成果が『論文』として1日に何本も発表されています。 全ての論文を個人で追うのは無理でも、月に1本くらいならなんとかなるはず。 それをみんなで共有すれば、効率良く何本もの論文にふれあえる! そこで、機械学習名古屋 は通常の勉強会とは別の 研究会 を立ち上げました。 月1程度で集まって、みんなで『読んだ論文の共有』をしましょう! 進め方 参加者は、読みたい論文 を申告する。 参加時アンケートで『読みたい論文』を必須項目としています。必ず 読みたい論文 を用意してから参加を申し込んでください。 論文を開催日時までに読んで、1ページに簡単にまとめる(※1)。 当日、発表(LT)する。 ↑を肴に◯◯(※2)。 ※1:すぐ後で解説する「論文まとめについて」 を参照してください。 ※2:質疑応答議論ツッコミ等含む 論文まとめについて 論文まとめテンプレートを用意しました↓ 論文まとめテンプレート こちらは 落合陽一氏の論文まとめ方(あるスライドの65ページ目) を参考に Markdown 1ページに落とし込んだものです。 まとめ方の考え方は、このスライド及び後に上げる参考サイトを参考にしてください。 こちらを利用して、Markdown でまとめを作成していただき、研究会の GitHub リポジトリ に登録(プルリクを送る形でリクエスト)、という流れになります。 参加者は、アンケートに回答した『読みたい論文』を読んで、当日までにこのテンプレートを利用した Markdown によるまとめを作成して頂き、研究会の GitHub リポジトリ に登録(プルリクを送る形でリクエスト)してください。 (GitHub を使えない等の場合は、当日までに論文をまとめた .md ファイルを管理者宛に送付(もしくは共有URLを提示)いただければ、プルリク代行いたします) 参考 高速で論文がバリバリ読める落合先生のフォーマットがいい感じだったのでメモ - 書架とラフレンツェ パワポ版の落合先生流論文要旨のテンプレートを作ったので配布する - 一人ぼっちのライフハック生活 今回の発表内容 発表者 論文 URL antimon2 Searching For Activation Functions miwa Using Grouped Linear Prediction and Accelerated Reinforcement Learning for Online Content Caching matsui_kota Joint distribution optimal transportation for domain adaptation smogami Employing Weak Annotations for Medical Image Analysis Problems KaazTech Students’ Performance Prediction Using Data of Multiple Courses by Recurrent Neural Network SSS3 Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization ToshiakiSakurai Do They All Look the Same? Deciphering Chinese, Japanese and Koreans by Fine-Grained Deep Learning nharu1san Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-Based Chatbots BrickLego Dynamic Routing Between Capsules c0hama BinaryConnect: Training Deep Neural Networks with binary weights during propagations n-kats Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts ※参加登録順 持ち物 『論文を読む!』という前向きな気持ち 読んだ論文をまとめて『あとは当日発表がんばるぞ!』という気構え 参加枠について 紹介枠は、管理者(共催者の誰か)から紹介を受けた人用の枠です。アンケートで『誰からの紹介か』を必ず記入して申し込んでください。 よく分からない方は『一般枠』で申し込んでください。 会場 有限会社 来栖川電算 会議室 名古屋市中区新栄1-29-23 アーバンドエル新栄2階 電源・Wi-Fiあり

2/3 (土)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★ スポンサーさまご紹介 機械学習名古屋の勉強会はスポンサーさまのご協力をいただき開催しております。 どなたでも無料で参加でき、懇親会費用も一部、ご負担頂いております。 来栖川電算さま  会場費用全額と懇親会費用の一部負担 株式会社groovesさま  懇親会費用の一部負担 ☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★ 勉強会について 前回同様、前半ハンズオン、後半発表(LT)の2部構成を予定しています。 1. CIFAR-10のハンズオン CIFAR-10画像データセットは小さいサイズのカラー画像のデータセットです。 画像サイズは32 x 32px 10クラスの画像がそれぞれ6000枚、計60000枚の画像がある そのうち50000枚が学習データ、10000枚がテストデータ クラスはairplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck 今回はこのデータセットを題材に、TensorFlow/TensorBoard の使い方、CNN(畳み込みニューラルネット)の基本を抑えよう!というテーマでハンズオンを行います。 環境等 以下の環境を前提とします: Python 2.7.x / 3.x (3.5 以上を推奨) TensorFlow v1.3.x 以降(なるべく最新) TensorBoard(任意、TensorFlow と同時にインストールされていればそれでOK) Jupyter notebook(任意、あると便利) ※TensorFlow 等は事前にインストール or DockerイメージDL で準備しておいてください。  (前回の勉強会で準備した Docker イメージ でもOK) ハンズオン資料 ハンズオン資料 2. 発表(LT) 何か発表をしていただける方は、ご連絡をお願いします。 機械学習/ディープラーニングに関することや、関連する内容ならなんでもOKです。 antimon2 (未定、たぶん Julia 関連) 《スポンサーLT》Forkwell サービスの紹介 時間割 《準備中》 会場について ※前回と会場が異なります。ご注意ください。 オフィスパーク伏見・りそな名古屋ビル 8B 地下鉄伏見駅直結! 飲食可能(ゴミはお持ち帰りください) Wi-fi なし(テザリング環境等は各自でご用意をお願いいたします) 電源あり(電源タップケーブルを持ってきていただけると助かります) 勉強会開始前はバスケットボールのゲームをスクリーンに流しています。 懇親会について 勉強会後に、懇親会を予定しています。 こちらも来栖川電算様とgrooves様が一部、負担をしていただけます。 ぜひ、ご参加ください。

1/17 (水)

50a44fe02b59d3bb9a33132348195c8f Sicss Society Public Seminars & Workshops
証明中心でピアスの型システム入門を読む会
内容 TaPL (型システム入門) をみんなで読みましょう。 実装はあまりやらずに主に証明を中心に読み進めます。 今回 今回は3章から 持ち物 型システム入門 (無ければ隣の人に見せてもらえるかも) 参加枠について "Sicss Society枠"はサークル関係者のための枠です。 よくわからない方は一般枠からお申し込みください

12/20 (水)

50a44fe02b59d3bb9a33132348195c8f Sicss Society Public Seminars & Workshops
証明中心でピアスの型システム入門を読む会
内容 TaPL (型システム入門) をみんなで読みましょう。 実装はあまりやらずに主に証明を中心に読み進めます。 今回 今回は§§2.2.6から 持ち物 型システム入門 (無ければ隣の人に見せてもらえるかも) *NEW* ギフト交換用のプレゼントを持ってきましょう〜 参加枠について "Sicss Society枠"はサークル関係者のための枠です。 よくわからない方は一般枠からお申し込みください

11/22 (水)

50a44fe02b59d3bb9a33132348195c8f Sicss Society Public Seminars & Workshops
証明中心でピアスの型システム入門を読む会
内容 TaPL (型システム入門) をみんなで読みましょう。 実装はあまりやらずに主に証明を中心に読み進めます。 今回 2章数学的準備から 持ち物 型システム入門 (無ければ隣の人に見せてもらえるかも) 参加枠について "Sicss Society枠"はサークル関係者のための枠です。 よくわからない方は一般枠からお申し込みください

11/11 (土)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
※今回はオリファビル4階になります
☆★☆★☆★  来栖川電算様にスポンサーになって頂きました。  ☆★☆★☆★ ☆★☆★☆★ 参加費無料です。どなたでもお気軽にご参加下さい。 ☆★☆★☆★ 今回は、4階になります。お気を付けください。 1. TensorBoradのハンズオン 機械学習で結果や途中経過を確認・レポートするのに、データの可視化が重要になってきます。 今回は TensorFlow に標準で付いてくる(※1) TensorBoard で、様々な可視化を体感できるハンズオンを行いたいと思います。 学習過程の可視化(loss、正解率、その他の評価指標などの確認) 学習途中経過の可視化(Data Augmentation 後の画像 、重みのHistogramなどの確認) 学習結果の可視化(汎化性能、分類結果などの確認) ※詳細は ハンズオン資料 を参照ください。 ハンズオン資料 ハンズオン資料 環境等 以下の環境を前提とします: Python 2.7.x / 3.x (3.5 以上を推奨) TensorFlow v1.3.0 それ以前のバージョンでもおそらく動作しますが、できる限り最新のTensorFlowをご用意ください。 TensorBoard v0.1.8(※1) それ以前のバージョンでもおそらく動作しますが、できる限り最新のTensorBoardをご用意ください。 numpy v0.11.x 以上 matplotlib v2.0.x 以上 ※これらの環境構築済の Docker イメージ を用意しました。docker pull antimon2/mln201711 してご利用ください。 ※ ハンズオン資料 も参照ください。 ※1…TensorFlow 最新版(v1.3)では別パッケージになっていますが、pip等でインストールした場合には依存関係で同時にインストールされるようになっています。 2. 発表 何か発表をしていただける方は、ご連絡をお願いします。 機械学習/ディープラーニングに関することや、関連する内容ならなんでもOKです。 antimon2 (未定、NGK2017B の再アナウンス・Julia について等を予定) n-katsu doc2vecについて 時間割 13:00-13:10 挨拶 13:10-14:30 ハンズオン 14:40-15:00 ハンズオンの解説・質疑応答 15:00-     発表 会場や会費について 会場:名駅南VIPルーム (4階) 住所:名古屋市中村区名駅南1丁目19-27 オリファビル4階 会費:無料 お気軽にご参加ください。 懇親会について 懇親会も来栖川電算様が一部、負担をしていただけます。 ぜひ、ご参加ください。

9/2 (土)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
☆★☆★☆★  来栖川電算様にスポンサーになって頂きました。  ☆★☆★☆★ ☆★☆★☆★ 参加費無料です。どなたでもお気軽にご参加下さい。 ☆★☆★☆★ 1. Google の機械学習APIを使ったハンズオン 前回の東建ホールの大発表会で、Google、Microsoft、ドコモ等の機械学習APIを使った発表がありました。 非常に興味深い内容の発表でしたが、今回は、Google APIを使ったハンズオンを行いたいと思います。 普段、API等は使わずに自作の機械学習プログラムを使用している方も多いと思いますが、APIを使った手軽な機械学習をお試しください。 https://cloud.google.com/products/machine-learning/?hl=ja のサービスを利用します。 クレジットカードの登録が必要です。下記 ハンズオン資料 (1) の 0. GCP ML サービス無料トライアルを開始する を参考に『無料トライアル』のサインアップまでは勉強会開始前までに済ませてください。 ハンズオン資料 ハンズオン資料 (1) ハンズオン資料 (2) ハンズオン資料 (3) 2. 発表 何か発表をしていただける方は、ご連絡をお願いします。 機械学習/ディープラーニングに関することや、関連する内容ならなんでもOKです。 櫻井  ドイツのIndustry4.0戦略、CeBITの報告 antimon2 NGK2017Bの告知 時間割 13:00-13:10 挨拶 13:10-14:30 各自でハンズオン 14:40-15:00 ハンズオンの解説・質疑応答 15:00-     発表 会場や会費について 会場:名駅南VIPルーム 住所:名古屋市中村区名駅南1丁目19-27 オリファビル3階 会費:無料 お気軽にご参加ください。 懇親会について 懇親会も来栖川電算様が一部、負担をしていただけます。 ぜひ、ご参加ください。

7/2 (日)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
懇親会について 機械学習 名古屋 第11回勉強会(http://machine-learning.connpass.com/event/58962/) の懇親会です。 誰でも参加可能ですので、ぜひ、ご参加ください。 東建コーポレーション様も参加されます。ITエンジニアの方も多く、また、ITに力を入れており、実践的な話ができると思います。ぜひ、ご参加下さい。 会場 丸の内 オルフェ 愛知県名古屋市中区丸の内1-8-23 第7KTビル B1F http://tabelog.com/aichi/A2301/A230102/23003754/ 時間 17:00-19:00 料金 4000円(飲み放題付き)のコースをお願いしました。

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
☆★☆★☆★ 東建コーポレーション(株)様に会場を無償提供頂きました。 ☆★☆★☆★ ☆★☆★☆★   参加費無料です。どなたでもお気軽にご参加下さい。   ☆★☆★☆★ 今回は、東建コーポレーション(株)様がスポンサーとなって、会場を無償提供頂きました。 収容人数400人の東建ホールにて勉強会を開催します! いつもは、ハンズオン形式で実際のコーディングを行っていますが、立派なホールということで、今回は、発表をメインに行います。 日曜日ということで、お休みの方も多いと思いますが、必ず良い話しが聞けますので、ぜひ、ご参加下さい。 申し込み方法 1・conpass上からの申し込み このページの「このイベントに申し込む」より登録してください。 2・それ以外 「友人・会社の同僚を数人まとめて」という場合は、このページ内にある「イベントへのお問い合わせ」よりお問い合わせください。 会場や会費について 会場:東建ホール 住所:名古屋市中区丸の内二丁目1番33号 東建本社丸の内ビル3F・4F http://www.token-hall.com 受付を3Fで行います。3Fまでお上りください。 会費:無料 お気軽にご参加ください。 ※受付時に、名刺を頂ければと思います。(任意) 発表について 発表者の募集は締切・確定とさせていただきました。 タイムテーブル 時間 タイトル 発表者 13:00-13:10 機械学習名古屋についての説明 三輪 13:10-13:45 Googe Cloud Platform を使ったAIの活用 牧野 13:45-14:10 Julia の紹介(仮) 後藤 14:10-14:20 休憩 14:20-14:50 分析屋を商売にしてみた〜実ビジネスに機械学習を適用するのは正直しんどい〜 伊藤 14:50-15:20 AIで飯を食う 田中 15:20-15:30 休憩 15:30-16:00 賢いAIへの道 ~データ収集&アノテーション~ 来栖川電算 16:00-16:15 東建から求人採用・外部委託についての説明 東建コーポレーション 16:15-16:20 懇親会の説明 三輪 懇親会について 東建コーポレーション様も参加する懇親会を行います。 東建コーポレーション様のITの取り組みを、いろいろお話できます。 こちらも合わせて、ご参加下さい。 https://machine-learning.connpass.com/event/59237/ よりお申し込みいただけます。

5/13 (土)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
☆★☆★☆★  来栖川電算様にスポンサーになって頂きました。  ☆★☆★☆★ ☆★☆★☆★ 参加費無料です。どなたでもお気軽にご参加下さい。 ☆★☆★☆★ 1. tf-goghを使ったハンズオン 今回は、n_kats_さんより、前回の発表で、ある画像を「ゴッホ的」に見せるがありましたが、それを、実際にコードで書いて理解しよう!という趣旨の勉強会を行います n_kats_さんの発表について http://qiita.com/n_kats_/items/891489d8ef912af4e699 「ゴッホ的」な画像を作るにあたって、ポイントはこの二点です。 2つの画像の特徴を混ぜる方法の理解すること ハイパーパラメーターを変更するどうなるかを試すこと mnist では、大量の数字画像データを学習して数字の判別を行いました。その仕組みを理解されている方も多いと思います。 今回のハンズオンは、それとは違い、tensorflowを使って「如何に画像の特徴を読み取るか」です。その仕組みを理解されている人は少ないと思いますので、ぜひ、ハンズオンを行なって、理解していきましょう。 ハンズオンに必要なものを準備しておいてください。 ・ tf-goghのソースコード(https://github.com/n-kats/tf-gogh) ・ tf-goghで利用する画像(元画像になるものや画風画像になるもの) ・caffemodelファイル ninモデル vggモデル  パッケージ(いずれもpipもしくはpip3でインストールできます。) ・ chainer ・ pillow ・ tensorflow ・ jupyter ・ matplotlib pythonのversionは3系をおすすめします。 Dockerを利用する場合は、 docker pull nkats/mln:20170513 を利用してください。 上記のパッケージと日本語環境を備えています。 Dockerイメージにモデルやtf-goghのソースコードは含まれていませんので、これらのダウンロードを忘れないでください。 (Dockerイメージのサイズは大きいので、会場でのダウンロードは難しいかと思うので事前にダウンロードをしておいてください。) 2. 発表 何か発表をしていただける方は、ご連絡をお願いします。 機械学習/ディープラーニングに関することや、関連する内容ならなんでもOKです。 A.Tajiri antimon2 tonosaki ディープラーニングでペットボトルの本数を数えてみる 時間割 13:00-13:10 挨拶 13:10-14:00 各自でハンズオン 14:10-14:30 ハンズオンの解説・質疑応答 14:30-     発表 会場や会費について 会場:名駅南VIPルーム 住所:名古屋市中村区名駅南1丁目19-27 オリファビル3階 会費:無料 お気軽にご参加ください。 懇親会について 懇親会も来栖川電算様が一部、負担をしていただけます。 ぜひ、ご参加ください。

3/11 (土)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
☆★☆★☆★  来栖川電算様にスポンサーになって頂きました。  ☆★☆★☆★ ☆★☆★☆★ 参加費無料です。どなたでもお気軽にご参加下さい。 ☆★☆★☆★ 前回、機械学習名古屋の管理人が運営するECサイト(http://www.imcshop.com)のアクセスログをディープラーニングを使って学習しました。 今回は、学習した内容を元に、サイトの改善にどうつなげるかのハンズオンを行います。 実際に運用しているサイトのデータですので、非常に実用性のある勉強会ができると思います。 通常公開しない極秘データ!?を使った勉強会です。ぜひ、ご参加下さい。 1. アクセスログを使ったハンズオン 前回の内容を確認して、学習データを用意して下さい。 https://machine-learning.connpass.com/event/43540/ 前回から引き続き、TensorFlow を利用します。 TensorFlow は、直接インストール or DockerイメージDL で準備しておいてください。 Installing TensorFlow(最新 v1.0 対応) / Download and Setup(v0.12 以下) Docker Docker for Windows / Docker for Mac / Docker Toolbox pyenv-virtualenv + TensorFlow 環境設定覚書(公式以外の方法の紹介 by antimon2) ※サンプルコードを公開します→ https://github.com/antimon2/MLN_201703/blob/master/CSVAnalyze.TF.ipynb 2. 発表 何か発表をしていただける方は、ご連絡をお願いします。 機械学習/ディープラーニングに関することや、関連する内容ならなんでもOKです。 kmt_t 「画像の精細化」 n-kats 「TensorFlowで絵を描いてみた」 satsuki kawamura  「人工知能xデザイン(仮)」 時間割 13:00-13:10 はじめに 13:10-14:00 バンスオン 14:10-15:10 kmt_t さん 15:20-15:50 satsuki kawamuraさん 16:00-16:30 n-kats さん 会場や会費について 会場:名駅南VIPルーム 住所:名古屋市中村区名駅南1丁目19-27 オリファビル3階 会費:無料 お気軽にご参加ください。 懇親会について 懇親会も来栖川電算様が一部、負担をしていただけます。 ぜひ、ご参加ください。