kelvinshao (@kelvinshao)


参加する勉強会



過去の勉強会

6/30 (土)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★ スポンサーさまご紹介 機械学習名古屋の勉強会はスポンサーさまのご協力をいただき開催しております。 どなたでも無料で参加でき、懇親会費用も一部、ご負担頂いております。 来栖川電算さま  会場費用全額と懇親会費用の一部負担 株式会社groovesさま  懇親会費用の一部負担 ☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★ 勉強会について 前回同様、前半ハンズオン、後半発表(LT)の2部構成を予定しています。 1. OpenAI Gym を使ったゲームの強化学習ハンズオン 前回に続き、OpenAI Gym を使ったゲームの強化学習ハンズオンを行います。 OpenAI Gym は、OpenAI の提供する強化学習の開発・評価用のプラットフォームです。前回はこの OpenAI Gym が提供するシュミレーション環境を利用して、ゲームの学習を通じて強化学習に触れあおう!というテーマでハンズオンを行いました。 今回はそれをもう少しだけ掘り下げてみたいと思います。 環境等 以下の環境を前提とします(前回とほぼ同じです): Dockerを利用しない場合 gymには依存するものがあり、インストールする必要があります。 macOS の場合 ※Python 等は事前にインストールしておいてください。 brew install cmake boost boost-python sdl2 swig wget ubuntu14.04/16.04 の場合 ※Python 等は事前にインストールしておいてください。 apt-get install -y python-numpy python-dev cmake zlib1g-dev libjpeg-dev xvfb libav-tools xorg-dev python-opengl libboost-all-dev libsdl2-dev swig Windows の場合 以下のいずれかの方法を選択してください: VirtualBox (等の仮想環境)上に Ubuntu をインストールしてそこに環境構築する WSL + Ubuntu をインストールして、その上に環境構築する ↑環境構築手順をまとめました → WSL+ubuntu18.04+VcXsrv+OpenAI Gym 動くまでのメモ python環境は次が必要です。 Python 3.x (3.6 以上を推奨) pip install gym pip install "gym[atari]" pip install chainerrl Dockerを利用する場合 docker pull nkats/mln_gym でダウンロードしてください。 注意点: Docker 利用の場合、GUIによる学習の確認が出来ません。 ハンズオン資料 資料 https://qiita.com/antimon2/private/5c4f11acb84a0089b5e7 プログラム https://github.com/mlnagoya/MLN_201806 はじめに資料を読みながら流れを解説します。その後、プログラムをもとに手を動かしてもらおうと思います。 前回のハンズオン資料 資料 https://qiita.com/n_kats_/items/932ca8dccab66f3255ed プログラム https://github.com/n-kats/MLN_201804 2. 発表(LT) 何か発表をしていただける方は、ご連絡をお願いします。 機械学習/ディープラーニングに関することや、関連する内容ならなんでもOKです。 antimon2 Julia で強化学習(仮) hashikawa プログラミング教育とAIの導入 nishie 岡山から飛入り!建築業界もAIが欲しいぜ! 時間割 13:00-15:00 ハンズオン(休憩含む) 15:00-15:30 hashikawa プログラミング教育とAIの導入 15:30-15:50 antimon2 Julia で強化学習(仮) 15:50-16:10 nishie 岡山から飛入り!建築業界もAIが欲しいぜ! 会場について 名古屋市中区栄4丁目16番29号 中統ビル 4001 飲食可能(ゴミはお持ち帰りください) Wi-fi なし(テザリング環境等は各自でご用意をお願いいたします) 電源あり(電源タップケーブルを持ってきていただけると助かります) 勉強会開始前はバスケットボールのゲームをスクリーンに流しています。 懇親会について 勉強会後に、懇親会を予定しています。 こちらも来栖川電算様とgrooves様が一部、負担をしていただけます。 ぜひ、ご参加ください。 懇親会は下記イベントページより申し込みをお願いします。 https://machine-learning.connpass.com/event/91704/ 当日の申し込みは行えませんのでご了承ください。 お問い合わせについて お問い合わせのある方は、このページの「イベントへのお問い合わせ」よりお気軽にお問い合わせください。 フィードからのお問い合わせには気付かずに返信ができない場合がありますのでご了承ください。

4/25 (水)

E54e3afb4d5f3257c0e472ba5981f569 SERAKU_みんなの情熱大学
統計ソフトSASを使ったハンズオン講座 昨今、注目を集めているデータ分析について、統計ソフトSASを使用し、 データ抽出・加工を行うとともに分析用資料を作成する。 何を持って帰れるのか データ分析やデータ加工方法を講義します。 実際に分析用資料を作成することで業務イメージやデータ活用方法を修得することができます。 情報交換やネットワーキングの機会 講座の後には無料の懇親会を設けています。現役エンジニアとの情報交換の機会に。 軽食とお菓子、アルコール類やソフトドリンクもご用意しています。 途中退出も可能!お時間の許す限りご参加ください。 主な内容 統計ソフトSASの使用方法 ハンズオンによるデータ抽出実習 データをExcelに出力し、ピボットテーブルによる分析用資料を作成 タイムテーブル 受付時に名刺を1枚頂戴いたします。 受付時間は18:30~19:00になります。 ※遅れて参加も可能です。会場の扉をそっと開けてお入りください。 7F会場の受付でお名前をスタッフにお伝えください。 時間 内容 19:00~21:00 講義 21:00~21:30 懇親会 参加費 無料 懇親会は軽食とドリンクをご用意しています。 事前準備/必要な機材等 特になし こんな人を主な対象としています Excelの基本操作ができる方。 データ活用について興味がある方。 データ活用とはどういうものかを知りたい方 多くの方にご参加いただきたいと思っています。お気軽に是非ご参加ください♪ 登壇者紹介 和田圭史 株式会社セラク ―略歴― データ活用に関し未経験でありながら、独学でSASの基本を学習。 現在、SASを使用したプロジェクトにて主力エンジニアとして活躍中。 開催場所 株式会社セラク 名古屋支社 〒450-0001愛知県名古屋市中村区那古野1-47-1 名古屋国際センタービル 7F 注意事項 受付時に名刺を1枚頂戴いたします。 当日は写真撮影を行います。もし写真撮影NGの方がいらしたら、スタッフまでお申し出ください。 イベント当日の様子は後日なんらかの媒体に掲載させていただく場合がございます。   お申込後、イベント内容は運営都合により変更/キャンセルになる場合がございます。予めご了承ください。 お問い合わせ セラク名古屋支社:[email protected]

4/21 (土)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★ スポンサーさまご紹介 機械学習名古屋の勉強会はスポンサーさまのご協力をいただき開催しております。 どなたでも無料で参加でき、懇親会費用も一部、ご負担頂いております。 来栖川電算さま  会場費用全額と懇親会費用の一部負担 株式会社groovesさま  懇親会費用の一部負担 ☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★ 勉強会について 前回同様、前半ハンズオン、後半発表(LT)の2部構成を予定しています。 1. OpenAI Gym を使ったゲームの強化学習ハンズオン OpenAI Gym は、OpenAI の提供する強化学習の開発・評価用のプラットフォームです。 今回はこの OpenAI Gym が提供するシュミレーション環境を利用して、ゲームの学習を通じて強化学習に触れあおう!というテーマでハンズオンを行います。 環境等 ※Python 等は事前にインストール or DockerイメージDL で準備しておいてください。 以下の環境を前提とします: Dockerを利用しない場合 windowsでは難点が多いため、virtualboxなどの仮想環境でubuntu16.04を使うことをおすすめします。 gymには依存するものがあり、インストールする必要があります。 Macの場合 brew install cmake boost boost-python sdl2 swig wget ubuntu14.04の場合 apt-get install -y python-numpy python-dev cmake zlib1g-dev libjpeg-dev xvfb libav-tools xorg-dev python-opengl libboost-all-dev libsdl2-dev swig python環境は次が必要です。 Python 3.x (3.5 以上を推奨) pip install gym pip install "gym[atari]" pip install chainerrl Dockerを利用する場合 docker pull nkats/mln_gym で環境でダウンロードしてください。 ハンズオン資料 資料 https://qiita.com/n_kats_/items/932ca8dccab66f3255ed プログラム https://github.com/n-kats/MLN_201804 はじめに資料を読みながら流れを解説します。その後、プログラムをもとに手を動かしてもらおうと思います。 2. 発表(LT) 何か発表をしていただける方は、ご連絡をお願いします。 機械学習/ディープラーニングに関することや、関連する内容ならなんでもOKです。 時間割 13:00-15:00 ハンズオン(休憩含む) 15:10-15:25 Yamazakiさん Dockerについて 15:25-15:55 TakaAdachi 害獣識別の機械学習 15:55-16:00 《スポンサーLT》Forkwell サービスの紹介 16:00-16:20 antimon2 たぶんJulia関連 会場について ※前回と部屋番号が異なります。ご注意ください。 オフィスパーク伏見・りそな名古屋ビル 8D 地下鉄伏見駅直結! 飲食可能(ゴミはお持ち帰りください) Wi-fi なし(テザリング環境等は各自でご用意をお願いいたします) 電源あり(電源タップケーブルを持ってきていただけると助かります) 勉強会開始前はバスケットボールのゲームをスクリーンに流しています。 懇親会について 勉強会後に、懇親会を予定しています。 こちらも来栖川電算様とgrooves様が一部、負担をしていただけます。 ぜひ、ご参加ください。

11/11 (土)

C0a692bf3e8aa66150559ea1a042a31d 機械学習 名古屋
※今回はオリファビル4階になります
☆★☆★☆★  来栖川電算様にスポンサーになって頂きました。  ☆★☆★☆★ ☆★☆★☆★ 参加費無料です。どなたでもお気軽にご参加下さい。 ☆★☆★☆★ 今回は、4階になります。お気を付けください。 1. TensorBoradのハンズオン 機械学習で結果や途中経過を確認・レポートするのに、データの可視化が重要になってきます。 今回は TensorFlow に標準で付いてくる(※1) TensorBoard で、様々な可視化を体感できるハンズオンを行いたいと思います。 学習過程の可視化(loss、正解率、その他の評価指標などの確認) 学習途中経過の可視化(Data Augmentation 後の画像 、重みのHistogramなどの確認) 学習結果の可視化(汎化性能、分類結果などの確認) ※詳細は ハンズオン資料 を参照ください。 ハンズオン資料 ハンズオン資料 環境等 以下の環境を前提とします: Python 2.7.x / 3.x (3.5 以上を推奨) TensorFlow v1.3.0 それ以前のバージョンでもおそらく動作しますが、できる限り最新のTensorFlowをご用意ください。 TensorBoard v0.1.8(※1) それ以前のバージョンでもおそらく動作しますが、できる限り最新のTensorBoardをご用意ください。 numpy v0.11.x 以上 matplotlib v2.0.x 以上 ※これらの環境構築済の Docker イメージ を用意しました。docker pull antimon2/mln201711 してご利用ください。 ※ ハンズオン資料 も参照ください。 ※1…TensorFlow 最新版(v1.3)では別パッケージになっていますが、pip等でインストールした場合には依存関係で同時にインストールされるようになっています。 2. 発表 何か発表をしていただける方は、ご連絡をお願いします。 機械学習/ディープラーニングに関することや、関連する内容ならなんでもOKです。 antimon2 (未定、NGK2017B の再アナウンス・Julia について等を予定) n-katsu doc2vecについて 時間割 13:00-13:10 挨拶 13:10-14:30 ハンズオン 14:40-15:00 ハンズオンの解説・質疑応答 15:00-     発表 会場や会費について 会場:名駅南VIPルーム (4階) 住所:名古屋市中村区名駅南1丁目19-27 オリファビル4階 会費:無料 お気軽にご参加ください。 懇親会について 懇親会も来栖川電算様が一部、負担をしていただけます。 ぜひ、ご参加ください。